10 research outputs found

    Blood Pressure and Arterial Stiffness in Kenyan Adolescents With α+Thalassemia.

    Get PDF
    BACKGROUND: Recent studies have discovered that α-globin is expressed in blood vessel walls where it plays a role in regulating vascular tone. We tested the hypothesis that blood pressure (BP) might differ between normal individuals and those with α+thalassemia, in whom the production of α-globin is reduced. METHODS AND RESULTS: The study was conducted in Nairobi, Kenya, among 938 adolescents aged 11 to 17 years. Twenty-four-hour ambulatory BP monitoring and arterial stiffness measurements were performed using an arteriograph device. We genotyped for α+thalassemia by polymerase chain reaction. Complete data for analysis were available for 623 subjects; 223 (36%) were heterozygous (-α/αα) and 47 (8%) were homozygous (-α/-α) for α+thalassemia whereas the remaining 353 (55%) were normal (αα/αα). Mean 24-hour systolic BP ±SD was 118±12 mm Hg in αα/αα, 117±11 mm Hg in -α/αα, and 118±11 mm Hg in -α/-α subjects, respectively. Mean 24-hour diastolic BP ±SD in these groups was 64±8, 63±7, and 65±8 mm Hg, respectively. Mean pulse wave velocity (PWV)±SD was 7±0.8, 7±0.8, and 7±0.7 ms-1, respectively. No differences were observed in PWV and any of the 24-hour ambulatory BP monitoring-derived measures between those with and without α+thalassemia. CONCLUSIONS: These data suggest that the presence of α+thalassemia does not affect BP and/or arterial stiffness in Kenyan adolescents

    Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome

    Get PDF
    Our understanding of the basis of severe disease in malaria is incomplete. It is clear that pathology is in part related to the pro-inflammatory nature of the host response but a number of other factors are also thought to be involved, including the interaction between infected erythrocytes and endothelium. This is a complex system involving several host receptors and a major parasite-derived variant antigen (PfEMP1) expressed on the surface of the infected erythrocyte membrane. Previous studies have suggested a role for ICAM-1 in the pathology of cerebral malaria, although these have been inconclusive. In this study we have examined the cytoadherence patterns of 101 patient isolates from varying clinical syndromes to CD36 and ICAM-1, and have used variant ICAM-1 proteins to further characterise this adhesive phenotype. Our results show that increased binding to CD36 is associated with uncomplicated malaria while ICAM-1 adhesion is raised in parasites from cerebral malaria cases

    Improving the diagnosis of severe malaria in African children using platelet counts and plasma PfHRP2 concentrations

    Get PDF
    Severe malaria caused by Plasmodium falciparum is difficult to diagnose accurately in children in high-transmission settings. Using data from 2649 pediatric and adult patients enrolled in four studies of severe illness in three countries (Bangladesh, Kenya, and Uganda), we fitted Bayesian latent class models using two diagnostic markers: the platelet count and the plasma concentration of P. falciparum histidine-rich protein 2 (PfHRP2). In severely ill patients with clinical features consistent with severe malaria, the combination of a platelet count of ≤150,000/υl and a plasma PfHRP2 concentration of ≥1000 ng/ml had an estimated sensitivity of 74% and specificity of 93% in identifying severe falciparum malaria. Compared with misdiagnosed children, pediatric patients with true severe malaria had higher parasite densities, lower hematocrits, lower rates of invasive bacterial disease, and a lower prevalence of both sickle cell trait and sickle cell anemia. We estimate that one-third of the children enrolled into clinical studies of severe malaria in high-transmission settings in Africa had another cause of their severe illness

    Pooled testing conserves SARS-CoV-2 laboratory resources and improves test turn-around time: Experience on the Kenyan Coast

    No full text
    Background: International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period. Methods: We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast. Results: In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly. Conclusions: Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings

    Malaria is a cause of iron deficiency in African children.

    No full text
    Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334 ), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n?=?7,453), but not among individuals living in malaria-free areas (n?=?3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%
    corecore